Real and imaginary quadratic representations of hyperelliptic function fields
نویسندگان
چکیده
A hyperelliptic function field can be always be represented as a real quadratic extension of the rational function field. If at least one of the rational prime divisors is rational over the field of constants, then it also can be represented as an imaginary quadratic extension of the rational function field. The arithmetic in the divisor class group can be realized in the second case by Cantor’s algorithm. We show that in the first case one can compute in the divisor class group of the function field using reduced ideals and distances of ideals in the orders involved. Furthermore, we show how the two representations are connected and compare the computational complexity.
منابع مشابه
Real and Imaginary Quadratic Representations of Hyperelliptic Function Elds
A hyperelliptic function eld can be represented as imaginary or as real quadratic extension of the rational function eld. We show that in both cases one can compute in the class group of the function eld using reduced ideals of the orders involved. Furthermore, we show how the two representations are connected and compare the computational complexity.
متن کاملExplicit Infrastructure for Real Quadratic Function Fields and Real Hyperelliptic Curves
In 1989, Koblitz first proposed the Jacobian of a an imaginary hyperelliptic curve for use in public-key cryptographic protocols. This concept is a generalization of elliptic curve cryptography. It can be used with the same assumed key-per-bit strength for small genus. More recently, real hyperelliptic curves of small genus have been introduced as another source for cryptographic protocols. The...
متن کاملThe parallelized Pollard kangaroo method in real quadratic function fields
We show how to use the parallelized kangaroo method for computing invariants in real quadratic function fields. Specifically, we show how to apply the kangaroo method to the infrastructure in these fields. We also show how to speed up the computation by using heuristics on the distribution of the divisor class number, and by using the relatively inexpensive baby steps in the real quadratic mode...
متن کاملL - Functions and Class Numbers of Imaginary Quadratic Fields and of Quadratic Extensions of an Imaginary Quadratic Field
Starting from the analytic class number formula involving its Lfunction, we first give an expression for the class number of an imaginary quadratic field which, in the case of large discriminants, provides us with a much more powerful numerical technique than that of counting the number of reduced definite positive binary quadratic forms, as has been used by Buell in order to compute his class ...
متن کاملGlobalization and Employment
In this paper we study the compatibility of Cohen-Lenstra heuristics with Leopoldt’s Spiegelungssatz (the reflection theorem). We generalize Dutarte’s ([1983, in “Théorie des nombres, Besançon, 1983-1984”]) work to every prime number p : he proved the compatibility of the Cohen-Lenstra conjectures with the Spiegelungssatz in the case p = 3. We also show that the Spiegelungssatz is compatible wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999